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Secure Multi-Party Computation



Scenario 1: Love Game

 Alice and Bob meet at a pub

 If both want to date , they will find out

 If Alice doesn’t want to date, she won’t learn his intention

 If Bob doesn’t want to date, he won’t learn her intention

• One solution: a trusted person



Scenario 2: Finding Potential Terrorists

Intelligence agencies holds lists of potential terrorists

 They like to compute the intersection

 Any other information must remain secret

One solution: use a trusted party
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Scenario 3: Face Recognition

 Bob owns a list of face images, and Alice owning one face image is 
interested in knowing whether this image belongs to Bob list or not.

 The output will be 1 (or ID of corresponding match), or zero (if no 
match).

• one solution: use a trusted party.
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Scenario 4:  Auction

 Several parties wish to execute a private auction.

 The highest bid win.

 Only the amount of highest bid (and bidder) is revealed.

• One solution: use trusted auctioneer



Scenario 5: Distributed Data Clustering 

 Two (or more) agents are willing to construct a data clustering 
algorithm on whole of their data, without revealing their datasets.

 All agents obtain the structure of clustering algorithm built on 
whole data, but not the inputs of others.

• One solution: use trusted party.
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Secure Multiparty Computation

 In all scenarios the solution of an external trusted third party works.

 Trusting a third party is a very strong assumption.

 Can we do better?

We would like a solution with the same security guarantees, but 
without using any trusted party.



Goal: use a protocol which works without the 
presence of trusted party
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Setting

 Party 𝑃𝑖 (1 ≤ i ≤ n) has private input 𝑥𝑖.

 The parties wish to jointly compute a (known) function
𝑦 = 𝑓 (𝑥1, … , 𝑥𝑛).

 The computation must preserve certain security properties,
even is some of the parties collude and maliciously attack
the protocol.

 This is generally modeled by an external adversary 𝒜 that
corrupts some parties and coordinates their actions.



Security Requirements

 Correctness: parties obtain correct output .

 Privacy: only the output is learned.

 Independence of inputs: parties cannot choose their inputs as a 
function of other parties’ inputs.

 Fairness: if one party learns the output, then all parties learn the 
output.

 Guaranteed output delivery: all honest parties learn the output.



The Security Requirements of Auction Example

 Correctness: 𝒜 can’t win using lower bid than the highest.

 Privacy: 𝒜 learns the highest bid out of all inputs, nothing
else.

 Independence of inputs: 𝒜 can’t bid one dollar more than
the highest (honest) bid.

 Fairness: 𝒜 can’t abort the auction if his bid isn’t the
highest (i.e., after learning the result).

Guaranteed output delivery: 𝒜 can’t abort (stronger than
fairness, no DoS attacks).



Attack Scenarios

• Chosen-Plaintext Attack (CPA): In this attack, the adversary has the ability
to obtain the encryption of any plaintext(s) of its choice. It then attempts
to determine the plaintext that was encrypted to give some other
ciphertext.

• Chosen-Ciphertext Attack (CCA): The other type of attack is one where the
adversary is even given the capability to obtain the decryption of any
ciphertext(s) of its choice. The adversary's aim, once again, is then to
determine the plaintext that was encrypted to give some other ciphertext
(whose decryption the adversary is unable to obtain directly).
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Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows
computation on ciphertexts, generating an encrypted result that when
decrypted it matches the result of the operations as if they had been
performed on the plaintext.
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Number Theory



RSA: Multiplicative Homomorphism
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Key Generation:
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Decryption
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Security of RSA

• CPA: RSA encryption is deterministic encryption algorithm (i.e. has no
random component). Hence, an attacker can successfully launch a
chosen plaintext attack by encrypting likely plaintexts under the
public key and test if they are equal to the ciphertext.

• CCA: Because of multiplicative property of RSA, it is not secure
against CCA attack as well.
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ElGamal: Multiplicative Homomorphism
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Decryption
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Security of ElGamal

• CPA: Elgamal encryption scheme provides semantic security against
chosen-plaintext attack resulting from random component.

• CCA: Because of multiplicative property of ElGamal, it is not secure
against CCA attack. For example, given an encryption (𝑐1, 𝑐2) of
some message 𝑚 , one can easily construct a valid encryption
(𝑐1, 2𝑐2) of message 2𝑚.
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Paillier: Additive Homomorphism
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Encryption
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Decryption
Number Theory

Carmichael’s Theorem:



Paillier Encryption Scheme
Key generation and Encryption



Decryption



Homomorphic Properties
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Security of Paillier

• CPA : Paillier encryption scheme provides semantic security against
chosen-plaintext attack. The ability to successfully distinguish the
challenge ciphertext essentially amounts to the ability to decide
composite residuosity. The semantic security of the Paillier
encryption scheme was proved under the decisional composite
residuosity (DCR) assumption—the DCR problem is intractable.

• CCA: Paillier encryption is malleable and therefor does not protect
against chosen-ciphertext attack.
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Secure Multi-party Computation 
Protocols



Scenario 1:Love Game 
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Love Game

• The game is actually  multiplication.



Additive Homomorphic ElGamal Cryptosystem

Additively homomorphic ELGamal



Secure Multiplication with plaintext input
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Scenario 2: Finding Potential Terrorists
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Finding Potential Terrorists:

• The problem is actually a set intersection.
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Secure Equality Test Protocol

41



Secure Set Intersection Protocol
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Scneario 3:Face Recognition



Face Recognition

Database

Alice Bob

Is he a criminal?

Yes, ID/No

Processing

• Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, R. L. Lagendijk and T. Toft, Privacy- Preserving Face Recognition, 9th International 
Symposium on Privacy Enhancing Technologies, LNCS 5672, pp. 235-253, August 2009.
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considering Privacy

Database

Alice Bob

Is he a criminal?

[Yes], [ID]/[No]

Processing
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Eigenface Algorithm
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Secure Face Recognition

• Setting:
• Customer (Alice) has an input image and her encryption key.

• Service Provider (Bob) has an image database of criminals. Bob represents 
each criminal with a feature vector and has the eigenvectors to produce the 
feature vector of a new input image. 

• Security assumptions:
• Alice and Bob are semi-honest. 
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Projection in the encrypted domain

Input image

Alice Bob(sk) (pk)

Feature vectors 
in a database

Encrypted pixel values

Apply projection and obtain 
the feature vector of the 
input image.
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Euclidean Distance

Secure Multiplication

Protocol!

Homomorphism

Alice Bob(sk) (pk)
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Secure Multiplication Protocol

Alice Bob
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Finding the minimum

Alice Bob(sk) (pk)

Find the minimum squared distance!

But…
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Which one has more money?!

A =  how much 
money user1 has

B =  how much 
money user2 has

User 1       if  A>B

Equal       if  A=B

User2       if  A<B

Secure Comparison 
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Finding the Minimum: Comparison
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10

14 a < b

a > b

a < b
0 a > b 1



Interactive Game
Alice Bob
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Comparison
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Comparison Protocol

• Alice computes the 𝑒 values in the encrypted domain and sends them 
to Bob after shuffling.

• Bob decrypts 𝑒 values and checks if there is any zero among them: if 
yes, sends [1], otherwise [0].

• Alice uses the response from Bob for the final step to compute the 
outcome of the comparison.
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Finding the minimum

[8] [7] [2] [10][4] [9] [1] [5]

a>b?  1:0

[1] [0]
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[min]=[b R+ a(1-R)]
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Scenario 4: Private Auction
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Auction: Finding the maximum

[8] [7] [2] [10][4] [9] [1] [5]
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Scenario 5: Distributed Data Mining
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Data Mining Operations
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Mining Operations



Collaborative Analysis
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Horizontal Data Distribution:
Example: Hospital and Health Center.
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Vertical Data Distribution:
Example: Facebook and Google accounts.
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Categorical Clustering Tree (CCTree)
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CCTree Criteria

 Stop Conditions:  

1)  Number of elements in a node

2)  Node purity

 Split Attribute
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Shannon Entropy
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Secure Sum (1):

Distributed Secure Sum Protocol



Secure Sum (2):
Secret Sharing and HE

• First protocol for data aggregation 

• Additive homomorphic encryption

• Secret sharing over mod n

• Interactive



Alice

Bob

Charles



Alice

Bob

Charles

mAA

mBB

mCC



Alice

Bob

Charles



Alice

Bob

Charles



Alice

Bob

Charles

mAA + mBA + mCA

mBB + mAB+ mCB

mCC + mAC+ mBC



Alice

Bob

Charles



CCTree/ Horizontal/ Multi-Party

 Split Attribute (Secure Sum)

 Stop Conditions:  

1)  Number of elements (Secure Sum)

2)  Node purity (Secure  Entropies Addition)
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CCTree/ Vertical/ Multi-Party

 Split Attribute (Secure Comparison)

 Stop Conditions:  

1)  Number of elements (Secure Sum)

2)  Node purity (Secure Entropies Addition)
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