Quantum Key Recycling with noise

Daan Leermakers and Boris Škorić
TU Eindhoven

W.I.C. Symposium
May 31, 2018
Outline

- Quantum Key Distribution (noiseless/noisy)
- Quantum Key Recycling (noiseless/noisy)
- 8-state encoding
- Security proof
- Communication rate
Cryptography using Quantum Mechanics

- Relies on two properties
 - Destructive measurements
 - No cloning theorem
- Exploited famously in 1984 with Quantum Key Distribution (BB84).
- Even before BB84, the idea of Quantum Key Recycling was introduced.
Encoding bits into quantum states

- Classical information can be encoded into the polarization of a photon
- Alice encodes the bit in one of the two bases chosen randomly.
- Bob measures in a random bases.
- Information is sent when they choose the same basis.
- An attacker doesn’t know which basis to measure in.
Quantum Key Distribution (noiseless)

1. Alice generates two random bit strings $x, b \in \{0,1\}^n$.
2. Alice prepares the qubit states by encoding x_i in basis b_i and sends it to Bob.
 \[|x_i\rangle_{b_i} \]
3. Bob measures the qubits in a random basis $b' \in \{0,1\}^n$ resulting in $x' \in \{0,1\}^n$.
4. Over a classical channel Alice and Bob compare b_i and b'_i.
 Where $b_i \neq b'_i$ the information is discarded. Where $b_i = b'_i$ they now share a secret bit.
5. To ensure nobody is eavesdropping they compare a small fraction of their bits. If there is a discrepancy they abort.
 \[b', y' \subset x' \]
 \[b, y \subset x \]
6. Alice and Bob use this secret key as a one-time pad to communicate a message.
Quantum key distribution (with noise)

1. Alice generates two random bit strings $x, b \in \{0,1\}^n$.
2. Alice prepares the qubit states by encoding x_i in basis b_i and sends it to Bob.

 $|x_i\rangle_{b_i}$

3. Bob measures the qubits in a random basis $b' \in \{0,1\}^n$ resulting in $x' \in \{0,1\}^n$.
4. Over a classical channel Alice and Bob compare b_i and b'_i. Where $b_i \neq b'_i$ the information is discarded. Where $b_i = b'_i$ they now share a secret bit.
5. To ensure nobody is eavesdropping they compare a small fraction of their bits. If there is a discrepancy they abort.

 $b', y' \subset x'$

 $b, y \subset x$

6. Alice and Bob use this secret key as a one time pad to communicate a message.

- In the case of a noisy quantum channel two additional steps are needed.
- An Error Correction Code that deals with the amount of noise they are willing to accept.
- A Privacy Amplification step where they shorten there string such that all potentially leaked information is removed.
- Both steps are operations on the classical bit string.
Quantum Key Recycling

- Alice and Bob start with a shared key $b \in \{0,1\}^n$ and use this key as their basis to encode and measure.
- This removes the need to throw away part of the measured string.

4. Over a classical channel Alice and Bob compare b_i and b'_i. Where $b_i \neq b'_i$ the information is discarded. where $b_i = b'_i$ they now share a secret bit.

$$b', \ y' \subset x'$$

$$b, \ y \subset x$$

- Quantum Key Recycling is more efficient than the original BB84 scheme and removes the need for 2-way communication (except for 1 accept/reject bit)
- To deal with noisy channels Error Correction and Privacy Amplification need to be done as a first step. For privacy amplification and additional key y, is
Quantum Key Recycling (noiseless)

1. Alice generates a random bit strings $x \in \{0,1\}^n$.
2. Alice prepares the qubit states by encoding x_i in basis b_i and sends it to Bob.

$$|x_i\rangle_{b_i}$$

3. In addition Alice sends a ciphertext $c = \mu \oplus x$ and an authentication tag t.

$$c, t \quad c', t'$$

4. Bob measures the qubits in the correct basis b resulting in $x' \in \{0,1\}^n$.
5. Bob computes the message $\mu = c' \oplus x'$

Bob accepts when $t' = Mac(K_{mac}, x'||c')$.
6. Bob communicates accept/reject to Alice.

Acc/rej

- In the next round, Alice and Bob can reuse their secret key b!
Quantum Key Recycling (with noise)

1. Alice generates a random bit strings \(x \in \{0,1\}^n \).
2. Alice prepares the qubit states by encoding \(x_i \) in basis \(b_i \) and sends it to Bob.

\[|x_i\rangle_{b_i} \]

3. For Error Correction Alice computes a syndrome and one-time pads it with a short key \(s = K_{SS} \oplus S(x) \).
 For Privacy Amplification she computes \(z = Ext(u, x) \).
 Alice sends a ciphertext \(c = \mu \oplus z, s \) and an authentication tag \(t = M(K_{MAC}, x||c||s) \).

\[c, t, s \]

4. Bob measures the qubits in the correct basis \(b \) resulting in \(x' \in \{0,1\}^n \).
5. Bob accepts when reconstruct \(x'' \) from \(x' \) is successful and \(t = M(K_{MAC}, x''||c'||s') \). He computes \(z'' = Ext(u, x'') \) and the message \(\mu = c' \oplus z'' \).
6. Bob communicates accept/reject to Alice.

Acc/rej
Privacy Amplification

- Question: How much Privacy amplification is needed?

- In Quantum Key Distribution: How much does an attacker (Eve) know about the string x.
- In Quantum Key Recycling: How much does Eve know about the string x and the keys b, u.
- When not revealing the basis choice b, is advantageous to switch to 8-state qubit encoding.
Qubit encodings

- **4-state encoding:**

- **8-state encoding:**
 - Tetrahedron shape → bit vectors add up to zero
 - Eve learns nothing about the message from a direct measurement on the qubit.
Security proof

- Since the message is perfectly secure, we only have to worry about the security of the key material.
- If Eve does not know the basis b, the 8-state encoding protect the message perfectly.
- How much privacy amplification is needed to ensure the protocol is arbitrarily close to ideal?

$$\left\| \rho^\text{UBE}_z - \rho^\text{UB} \otimes \rho_z \right\|_1 \leq \varepsilon$$

- Eve’s real state
- Eve’s state completely separated from U,B
 “Ideal state”
Induction argument

- If one round of Quantum Key recycling is secure, multiple are as well.
 - $\|\rho_{real}^{(1)} - \rho_{ideal}^{(1)}\|_1 \leq \epsilon \Rightarrow \|\rho_{real}^{(N)} - \rho_{ideal}^{(N)}\|_1 \leq N\epsilon$

- $\|\rho_{real}^{(1)} - \rho_{ideal}^{(1)}\|_1 = \|\rho_{inter}^{(2)} - \rho_{ideal}^{(2)}\|_1$

- $\|\rho_{real}^{(1)} - \rho_{ideal}^{(1)}\|_1 \geq \|\rho_{real}^{(2)} - \rho_{inter}^{(2)}\|_1$

$\Rightarrow \|\rho_{real}^{(2)} - \rho_{ideal}^{(2)}\|_1 \leq 2\epsilon$
‘Rate’ = the data sent minus the key spent per round per qubit.

Allowed noise expressed in Bit Error Rate (β)

$$Rate = 1 - h(\beta) - 2 \log f(\beta) - O\left(\frac{1}{\sqrt{n}}\right)$$

Privacy amplification:

$$f(\beta) = \sqrt{(1 - \beta) \left(1 - \frac{3}{2} \beta\right) + \frac{1}{2} \beta(1 - \beta) + \beta \sqrt{2}}$$

Asymptotic rate

rate vs. n for different values of N and $\beta = 3\%$
Conclusion

• The laws of quantum physics can be used to construct secure cryptographic protocols.

• 8-state encoding improves the security of Quantum Key Recycling compared to 4-state encoding.

• Quantum Key Recycling allows the secure re-use of encryption keys up to noise levels of around 9%.