An efficient fuzzy extractor for limited noise

Boris Škorić and Pim Tuyls

WIC Symposium
28-29 May 2009
An efficient fuzzy extractor for limited noise

huh?

a what?

WTF?
Fuzzy Extractor

\[X \xrightarrow{\text{Gen}} S \xrightarrow{\text{Rep}} S' \]

enrolment data \(W \)
\nProperties

- Secrecy and uniformity: \(\Delta(WS; WU) \leq \varepsilon \).
 "S given W is almost uniform"
- Error correction: If \(X' \) sufficiently close to \(X \), then \(S' = S \).
- Robustness [Boyen et al. 2005]:
 Detection of active attack against \(W \)

Applications

- privacy preserving biometrics
- anti-counterfeiting ("object biometrics")
- PUF-based key storage

Dodis et al. 2003
Juels+Wattenberg 1999
Linnartz+Tuyls 2003
Fuzzy Extractor: Efficiency

What's so special?
• Redundancy data (in W) must not leak info about secret S.
• Make near-uniform S from non-uniform X.
• How to authenticate W when there is no trusted authority?

"Efficiency"
• Extract as many reproducible bits from X as possible.
• Low storage requirements.
• Small computational load.
Limited noise

Common class of noise

- Considerable prob. that $x' \neq x$.
- Small number of likely x'.

Problematic for error correcting codes

- Codes work best with low error rate
- Cannot exploit non-uniform error patterns (low entropy of errors)
- Entropy loss.
• Def: \(\delta \)-almost universal hash functions \(F_r \).
For fixed \(x \) and \(x' \):

\[
\text{Prob}[F_R(x) = F_R(x')] \leq 2^{-L}(1 + \delta)
\]

• Not a cryptographic hash
• Main purpose: uniformity
• Light-weight implementation in hardware and software.
• Information-theoretic properties.
• Does not rely on unproven security assumptions
Fuzzy Extractor based on universal hash functions

Key reconstruction procedure

- Measure x'. Read p', q', r', w', m'.
- Make list L of likely candidates.
 - Must be manageable!
- Find x in L such that $\Psi_{p'}(x)=w'$.
 - Sort of Slepian-Wolf
- Compute $v' = \Gamma_{q'}(x)$.
- Check if $\text{MAC}(v'; p'q'r'w') = m'$.
- If okay, reconstruct secret $s = \Phi_{r'}(x)$.

Publicly stored enrolment data:
$p, q, r, w, m := \text{MAC}(v; pqrw)$

attack
p', q', r', w', m'
Fuzzy Extractor based on universal hash functions

- All three security functionalities achieved by universal hashes!
 - error correction
 - uniform key
 - manipulation detection key
- This scheme exploits low entropy of error patterns.

Theorem: If
\[
c \leq \max_{\rho} \left[H_2^0(X) + 2 - \log \frac{1}{\varepsilon(\varepsilon - \rho) - \delta/4} \right] - k - \sigma
\]

then \(\Delta(\text{PQRWM } S; \text{PQRWM } U) \leq \varepsilon \).
Conclusions

Fuzzy extractor is necessary security primitive for:

- privacy preserving biometrics
- anti-counterfeiting ("object biometrics")
- PUF-based key storage

Construction based on (almost-)universal hash functions

- Slepian-Wolf coding
- Only works for "limited" noise
- Less entropy loss than error-correcting code
- Efficient to implement