Key extraction from general non-discrete signals

Evgeny Verbitskiy, Pim Tuyls, Chibuzo Obi, Berry Schoenmakers, Boris Škorić

WISSEC 2008
13&14 November, Eindhoven
Outline

• Key extraction from continuous sources
• Defining properties of a Continuous-Source Fuzzy Extractor
• Partitioning scheme
• What if attacker has better knowledge of the source?
Almost all real-life sources generate real numbers, not discrete.
Key extraction

• **Privacy amplification:**
 Given a non-uniform source X, derive an L-bit string $f(X)$ as uniformly distributed as possible on $\{0, 1\}^L$.

• **Information reconciliation:**
 If the source is noisy, then some redundancy data $W(X)$ must be given before privacy amplification is possible.
 - biometrics
 - PUFs

• **Fuzzy extractor:**
 • Does both information reconciliation and privacy amplification.
 • Extracts secret key K from noisy source.
 • Aims for high entropy $H(K | W)$.
Traditionally defined for discrete source X. But most sources are continuous!

- extra step: discretization of X
- degree of freedom that can be exploited

We extend the definition [Buhan et al. 2007] of *Continuous-Space Fuzzy Extractor*

- Correctness
- Security
3.2 Fuzzy Extractors

Definition 5. An \((M, m, \ell, t, \epsilon)\)-fuzzy extractor

avoid
Correctness definitions

1. t-correct:
 If \(d(x, x') < t\) then \(K' = K\).

2. Worst case \(\epsilon\)-stochastically noise resilient:
 \[
 \forall x \quad \text{Prob}[\text{Rep}(X', w_x) = k_x] \geq 1 - \epsilon
 \]

3. On average \(\epsilon\)-stochastically noise resilient:
 For \((k_x, w_x) = \text{Gen}(x)\):
 \[
 \int \text{Prob}[\text{Rep}(X', w_x) = k_x] dx \geq 1 - \epsilon
 \]

Old way
- Requires distance measure
- Hard to see failure prob.
Security definitions

1. (m, δ)-secure.
 \[H_\infty(X) \geq m \Rightarrow \Delta(KW, U_L W) \leq \delta. \]

2. Worst case m-secure:
 \[\forall w \quad H_\infty(K|W=w) \geq m. \]

3. On average m-secure:
 \[\tilde{H}_\infty(K|W) \geq m \]

$H_\infty(X)$ not defined for cont. distribution

average conditioning
Continuous-Space Fuzzy Extractor: Partitioning scheme

Two nested equiprobable partitions
- secret K = outer index
- helper W = inner index

Enrollment
- Measure x.
- k=0.
- Store w=2.

Reconstruction
- Measure x'.
- Read w.
- Go to nearest blue interval.
- Read off k=0.

Gap between (k,w) and (k±1,w) reduces noise.
Partitioning scheme: 2D toy example

Gaps between \((k,w)\) and \((k+\Delta k,w)\) reduce noise.
Properties of the partitioning scheme

$K \in \{0,1\}^L$. $W \in \{0,1\}^b$.

- Security of the extracted key K: $H(K|W) = H(K) = L$.
 - Helper data reveals nothing about key.
 - Key is uniform.
 - "Worst-case L-secure".

- Leakage about the source X: $I(X; W) = H(W) = b$.
 - Helper data leaks b bits about raw measurement.
 - Inevitable!

- Correctness properties:
 - depends on specific noise distribution.
What if source distribution is not known exactly?

Partitioning scheme based on best guess

• Key not exactly uniform

• **Attacker may have better knowledge of X and exploit it!**

Lemma:

\[
\tilde{H}_\infty(K \mid W) \geq L - \log(1 + \delta \cdot 2^{L+b})
\]

with

\[
\delta = \frac{1}{2} \sum_{k,w} \Pr[K = k \land W = w] - \frac{1}{2^{L+b}}
\]

Gaussian case:

\[
\delta \leq \frac{\sqrt{\tilde{\sigma} - \sigma)^2 + (\tilde{\mu} - \mu)^2}}{\min(\sigma, \tilde{\sigma})}
\]

Why **average** conditioning on \(W \)?

Attacker does not control the helper data.
Conclusions

• Adapted Fuzzy Extractor definition for non-discrete source
 – correctness and security properties
 – generalization of [Buhan et al.]

• Explicit construction for known prob. densities
 – discretization: exploitable extra degree of freedom
 – nested equiprobable intervals
 – perfectly uniform key
 – noise reduced by gaps between intervals (k,w) and (k+Δk,w)

• Effect of incomplete knowledge about source
 – worst case assumption: attacker has full knowledge
 – average-case conditioning on W
 – derived bound on min-entropy of extracted key