Fuzzy Extractors
Fuzzy extractors: visual intuition

Enrollment phase

\[(s, w) = \text{Gen}(x)\]
Fuzzy extractors: visual intuition

Reconstruction phase

\[s' = \text{Rep}(x', w) \]
Is helper data really necessary?

a) All enrollments are finished before authentication
b) Enrollments at any time
Correctness:
\(\Pr[S' \neq S] \) must be small.
- Various ways to formalize this, e.g. averaged over \(X \),
 for worst-case \(X \); bound on the Hamming distance, ...

Security:
- \(W \) must not leak too much about \(S \).
- Distribution of \(S \) must be close to uniform
- Many ways to formalize this statement, e.g. \(H(S|W) \) close to \(\ell \),
 \(H_\infty(S|W) \) close to \(\ell \), stat. distance \(\Delta(SW;UW) \approx 0 \), ...
Secure sketch: requirements

Correctness: $\Pr[\hat{X} \neq X]$ must be small.
- Various ways to formalize this, e.g. averaged over X, for worst-case X; bound on the Hamming distance, ...

Security / Privacy:
- W must not leak too much about X.
 (But some leakage is inevitable!)
- Many ways to formalize this statement, e.g.
 $H(X|W) - H(X)$ as small as possible,
 $H_\infty(X|W) - H_\infty(X)$ as small as possible, ...
Fuzzy Extractor from Secure Sketch

Trivial construction

• reconstruct x using secure sketch
• then apply strong extractor to derive key from x
 - X is not uniform, key must be uniform
 - needs additional public randomness
Examples of Helper Data Schemes

1. Code Offset Method
2. Partitions
3. Generic Zero Leakage scheme for continuum X
4. Use of Gray codes
5. Reliable component selection for Optical PUFs
6. Reliable component selection for SRAM PUFs
7. Fuzzy Extractor made from Universal Hashes
1: Code Offset Method

- $X = \text{binary string}$
- Use a linear Error Correcting Code

Enrollment
- random key s
- encode to c_s
- $w = c_s - x$

Reconstruction
- $s' = \text{decode}(x' + w)$
Syndrome-only variant of the Code Offset Method

- \(X = \) binary string
- Use a linear Error Correcting Code that supports Syndrome Decoding ("SynDec")

Enrollment: \(w = \text{Syn} \, x \)

Reconstruction: \(\hat{x} = x' \oplus \text{SynDec}(w \oplus \text{Syn} \, x') \)

- Gives error pattern
- Syn(\(x \oplus x' \))
2: Partitions method

- First partition: equiprobable keys s
- 2nd partition: helper data w, equiprob. subpartitions
- $S \mid W=w$ is uniform
Why is it good to increase the number of sub-partitions?
3: Limiting case of the partitioning scheme

Number of colours $\rightarrow \infty$.

$W \in [0, 1)$

Set helper data w as:

$F(x) = \sum_{j=0}^{s-1} p_j + wp_s$

Claim: W leaks nothing about S!
Partitions method, 2D
4: Helper data for coating PUF

1. partitioning with $n=2^b$.
2. concatenated Gray code words
3. code offset method
Pointers to prominent features
• stable
• allows for re-alignment
• does not reveal black/white: secret
• [do not choose directly neighboring features]

If necessary apply code offset method in the end
6: Fuzzy Extractor for SRAM PUFs

Helper data:

- addresses of reasonably stable cells
- does not reveal bit value!

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- step 1: majority voting
- step 2: code offset method
Enroller
Measure x.
$s = \Phi_r(x); \quad w = \Psi_t(x);$
$v = \Gamma_j(x).$
$a = F(v, w).$

Device
Measure x'.
Select neighborhood B of x'.
For x_i in B: Find matches $\Psi_t(x_i) = w$.
For these matches compute $v_i = \Gamma_j(x_i)$.
Find unique match $F(v_i, w) = a$.
Reconstructed secret is $s_i = \Phi_r(x_i)$.
Privacy-preserving biometrics

Equivalent of hashed passwords table, but with noisy inputs
When to use FE or SS

<table>
<thead>
<tr>
<th>Application</th>
<th>privacy of X?</th>
<th>uniform secret?</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>password authent.</td>
<td></td>
<td></td>
<td>One-Way Function</td>
</tr>
<tr>
<td>biometric authent.</td>
<td></td>
<td></td>
<td>Secure Sketch + OWF</td>
</tr>
<tr>
<td>anticounterfeiting PUF</td>
<td></td>
<td></td>
<td>Secure Sketch + OWF</td>
</tr>
<tr>
<td>anticounterfeiting PUF</td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>PUF authent. w/o MACs</td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>PUF authent. with MACs</td>
<td></td>
<td></td>
<td>Fuzzy Extractor</td>
</tr>
<tr>
<td>POK</td>
<td></td>
<td></td>
<td>Fuzzy Extractor</td>
</tr>
</tbody>
</table>