How to capture, model, and verify the knowledge of legal, security, and privacy experts: a pattern-based approach

<table>
<thead>
<tr>
<th>L. Compagna, P. El Khoury</th>
<th>F. Massacci, N. Zannone</th>
<th>R. Thomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Research SAP</td>
<td>Dept. Informatics and TLC</td>
<td>Dept. of Law</td>
</tr>
<tr>
<td></td>
<td>Univ of Trento</td>
<td>Univ. of Leuven</td>
</tr>
</tbody>
</table>

www.massacci.org

www.tropos-project.org

www.serenity-project.org
Outline

• What is the Problem?
 – Address Regulatory Compliance Demands
 – Organizational Patterns

• Which is the Solution?
 – Graphical requirements Engineer Methodology

• Smart Items For Health Care
 – An Example of a Pattern

• Conclusion & Future Work
What’s the Problem?

• **Emerging trends in Security Engineering**
 – Security solutions can longer be best effort
 – Must show verifiable evidence with ….

• **Regulatory Compliance**
 – SOX/ Basel II/ EU Privacy Directive

• **Industry Compliance**
 – ISO 17799, ITIL Security Management..

• **Usage of SOA Mandatory**
 – WS-Security, WS-Trust, WS-Federations

• **Audit/Certification**
 – CC formal models, verification of the model
What’s the Solution?

• **Security & Privacy Patterns for Organisation**
 – Security patterns are security best practices presented in template format
 – Validated by Experts
 – Patterns can provide implementations
 • From rule of procedures to running code

• **Concept widely used in Software Patterns**
 – Large repositories are available
 – Model-Based Transformation available for different languages
So what is the problem?

Ask a toad what beauty is, the to kalon? He will answer you that it is his toad wife with two great round eyes issuing from her little head, a wide, flat mouth, a yellow belly, a brown back. . . . Interrogate the devil; he will tell you that beauty is a pair of horns, four claws and a tail.

Voltaire, Philosophical Dictionary (1764)
To Design a Security Pattern

• **Ask a lawyer**

 17(4)1 For the purposes of keeping proof, the parts of the contract or the legal act relating to data protection and the requirements relating to the measures referred to in paragraph 17(1) shall be in writing or in another equivalent form.

• **Ask a computer engineer**


  ```xml
  <SignedInfo>
    <CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
    <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
    <Transforms>
      <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
    </Transforms>
    <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
    <DigestValue>
      FLuQTa/LqDIZ5F2JSaMRHSRuaiQ=
    </DigestValue>
  </SignedInfo>
  ```

• **Ask a formal methods expert**

  ```prolog
  Fail_NonRepudiation(A,B,S) :- del_exec(A,B,S), not entrust_exec(A,B,S).
  entrust_exec (A,B,S) :- trust(A,B,S).
  entrust_exec (A,B,S) :- prove_fulfillment(A, B, S, TP).
  prove_fulfillment(A, B,S, TP) :- provides(B, PoF), proof_of_fulfillment(PoF, S), entrust_exec(TP, B, PoF), entrust_exec(A, TP, PoF).
  ```
Lingua Franca…

• **Software Patterns work because they essentially are by toads only**

 – The difference between C++, Java, C#, Eiffel, Perl, Python etc is negligible compared to the ones just made

• **Security Patterns needs integration of different “languages”**

• **Idea: a picture is worth a thousand words**

 – Provided you are able to get the picture from the words and the words back from the picture
Bob feels giddy and sends via his e-health terminal a request for assistance to MERC.

2. MERC receives the request and, since Bob’s doctor is in vacation, redirects it to Charlie.

3. Charlie analyses Bob’s medical data and history and sends to Bob an e-prescription.

4. Charlie analyses Bob’s medical data and history and sends to Bob an e-prescription.

5. Bob requests MERC for a medicine delivery.

6. MERC selects Alison to execute this task, sends a message to her to which she promptly acknowledge receiving then back the data for accomplishing this activity.

7. Alison goes to the pharmacy and after a successful credentials exchange, she gets the medicine from the pharmacist.

8. Alison delivers the medicine to Bob.

Notes: this last step involves an exchange of electronic credential between Bob and Alison. Their e-health terminals are used at this purpose.

Bob.
Goal-Based Req. Engineering

• **Graphical Requirement Language SI***
 – Agents, Roles, Relations among them
 – Execution, Delegation of Permissions

• **Legal text**
 – (semi) automatic extraction of graphical model from Natural Language description

• **Logical Formulae**
 – Experts provide general axioms and property descriptions
 – Instances added automatically from graphical model

• **Executable Business Process**
 – (Semi) automatic BPEL generation from graphical model
Pattern Design and Validation

- Lawyer describes patterns
 - NL2SI* transformation
 - Security Engineer Modifies Patterns
 - Formal Logic
 - Automated Reasoning Tool
 - Axioms and Rules

- Semantics Template
 - Graphical SI* Model
 - CAiSE Tool
 - SI* Interpretation of Logical Result

- Software Engineer Refine Patterns
 - BPEL Editing Tool
 - BPEL Skeleton

- Formal Logic: Axioms and Rules
Non repudiation requirement presented in SI*

The Employer (MERC) shall have evidence that the Executor (Alison) cannot repudiate her commitment.
What is an organizative security pattern?

Security Requirements

Initial organizational structure

- Agents
- Resources
- Tasks
- Relations: delegation, trust...

Context

Fulfilled

Revised organizational structure

- Add/Remove Agents
- Add/Remove Resources
- Add/Remove Tasks
- Add/Remove Relations

Solution

SI* MODELS
Context: The Employer requests the achievement of a commitment and delegates its execution to the Executor.

Requirement: the former has *no warranties* that the latter takes the responsibility of *achieving the commitment*.

Solution: The Employer refines the commitment into two sub parts.

3. Check the evidence about responsibilities taken by the Executor.
4. Represents the actual desire of fulfilling the commitment.
Conclusion & Future Work

• System designers are usually neither security nor legal experts
 – Graphical RE notation useful common ground

• Idea: a picture is worth a thousand words
 – Provided you are able to get the picture from the words and the words back from the picture

• Future Work
 – Improving model construction from NL
 – Reasoning capability only detect failed properties, should also suggest what is missing to satisfy them
 – Apply to other domains

• Ack
 – Supported by the EU through the EU-IST-IP SERENITY